Extensions 1→N→G→Q→1 with N=C16 and Q=C22

Direct product G=N×Q with N=C16 and Q=C22
dρLabelID
C22×C1664C2^2xC1664,183

Semidirect products G=N:Q with N=C16 and Q=C22
extensionφ:Q→Aut NdρLabelID
C16⋊C22 = C16⋊C22φ: C22/C1C22 ⊆ Aut C16164+C16:C2^264,190
C162C22 = C2×D16φ: C22/C2C2 ⊆ Aut C1632C16:2C2^264,186
C163C22 = C2×SD32φ: C22/C2C2 ⊆ Aut C1632C16:3C2^264,187
C164C22 = C2×M5(2)φ: C22/C2C2 ⊆ Aut C1632C16:4C2^264,184

Non-split extensions G=N.Q with N=C16 and Q=C22
extensionφ:Q→Aut NdρLabelID
C16.C22 = Q32⋊C2φ: C22/C1C22 ⊆ Aut C16324-C16.C2^264,191
C16.2C22 = D32φ: C22/C2C2 ⊆ Aut C16322+C16.2C2^264,52
C16.3C22 = SD64φ: C22/C2C2 ⊆ Aut C16322C16.3C2^264,53
C16.4C22 = Q64φ: C22/C2C2 ⊆ Aut C16642-C16.4C2^264,54
C16.5C22 = C2×Q32φ: C22/C2C2 ⊆ Aut C1664C16.5C2^264,188
C16.6C22 = C4○D16φ: C22/C2C2 ⊆ Aut C16322C16.6C2^264,189
C16.7C22 = D4○C16φ: C22/C2C2 ⊆ Aut C16322C16.7C2^264,185
C16.8C22 = M6(2)central extension (φ=1)322C16.8C2^264,51

׿
×
𝔽